

Measurement modules

WISE COACH Measurement modules

Copyright © 2007-2011 Wise Technologies Ltd. All rights reserved.

Worldwide Technical Support and Product Information www.wise-coach.com

Wise Technologies Corporate Headquarters

Wise Technologies Ltd. Cesta 24. junija 23 SI-1231 Ljubljana-Crnuce, Slovenia

Tel: +386 (0)1 541 41 30 Fax: +386 (0)1 541 41 32 Email: info@wise-t.com www.wise-t.com

Publication date: 6.7.2011

CONTENTS

Squat jump	2
Counter movement jump	5
Drop jump	8
Jump with additional weights	11
Repetitive counter movement jump	17
Repetitive hooping	
Step analysis	23
Body sway	
Dynamic balance test	29
Long jump	32
Stamping	
Maximal voluntary contraction.	
EMG signals analysis - optional with Maximal voluntary contraction	
EMG signals analysis - optional with Maximal voluntary contraction Contraction endurance EMG signals analysis - optional with Contraction endurance	40
EMG signals analysis - optional with Maximal voluntary contraction. Contraction endurance. EMG signals analysis - optional with Contraction endurance. Explosive contraction. EMG signals analysis - optional with Explosive contraction.	
EMG signals analysis - optional with Maximal voluntary contraction. Contraction endurance. EMG signals analysis - optional with Contraction endurance. Explosive contraction. EMG signals analysis - optional with Explosive contraction. Twitch.	
EMG signals analysis - optional with Maximal voluntary contraction. Contraction endurance. EMG signals analysis - optional with Contraction endurance. Explosive contraction. EMG signals analysis - optional with Explosive contraction. Twitch. Activation level.	
EMG signals analysis - optional with Maximal voluntary contraction. Contraction endurance. EMG signals analysis - optional with Contraction endurance. Explosive contraction. EMG signals analysis - optional with Explosive contraction. Twitch. Activation level. Tracking. Tracking force. Tracking angle.	
EMG signals analysis - optional with Maximal voluntary contraction. Contraction endurance. EMG signals analysis - optional with Contraction endurance. Explosive contraction. EMG signals analysis - optional with Explosive contraction. Twitch. Activation level. Tracking. Tracking force. Tracking angle. Evoked potentials.	
EMG signals analysis - optional with Maximal voluntary contraction. Contraction endurance. EMG signals analysis - optional with Contraction endurance. Explosive contraction. EMG signals analysis - optional with Explosive contraction. Twitch. Activation level. Tracking. Tracking force. Tracking angle. Evoked potentials. Static voluntary.	
EMG signals analysis - optional with Maximal voluntary contraction. Contraction endurance. EMG signals analysis - optional with Contraction endurance. Explosive contraction. EMG signals analysis - optional with Explosive contraction. Twitch. Activation level. Tracking. Tracking force. Tracking angle. Evoked potentials. Static voluntary. 4ROW.	

WISE COACH: Introduction Measurement modules

Wise Coach is an original concept aimed to support routine diagnostics and research work in biomechanics, motor control and behavior, rehabilitation medicine, etc.

It encompasses three main components:

- software for single measurement modules
- custom made braces and sensors for measurement stations, and
- master integration software for goal directed statistics and reports

The process of innovation and upgrade is an ongoing and until now twenty measurement modules have been developed. Goal directed products for acquisition and analyses of biological and biomechanical signals are focused on measurements in the field of strength, power, speed, coordination, balance and flexibility; thereby using force plate, EMG, electronic goniometers, and electronic force sensors.

Squat jump

The information about the person, jump type parameter and repetition sequence number is positioned at the top of the window. The "Measurement" tab displays the acquired signals as well as the selected cursors, and allows fine cursor positioning. The graph can be zoomed, and viewed along auto-scaled or fixed Y axis. Visible plots are collected in the "Plot list". By pressing the "Offset" button prior to the measurement, the input signal is set to zero. With the "Trigger" option unchecked, the signal acquisition starts immediately, while it is delayed until the force exceeds a pre-defined value if the "Trigger" option is selected. The acquisition terminates automatically when the jump is completed, and the cursors are set instantly. "Live signals" switches between live signal acquisition and the last acquired signal.

The results of the analysis are displayed on the "**Results tab**" - in the "**Current column**", which is updated when the T1 (start of push off) cursor is moved. Other columns contain the results of previously saved measurements. The "**Confirm**" button saves the parameters of the current jump, while the "**CMJ:SJ**" button opens a window where CMJ:SJ proportions can be calculated.

Gfi	Force impulse on interval between T1 and T2
Gft	Force impulse computed from fly time
T(G/2)	Time between GFI1/2 and T1
XGfi	Ratio between force impulse before T/2 and after T/2
XF	Ratio between force impulse before Fmax and after Fmax
Hg	Height computed from takeoff velocity
Hft	Height computed from fly time
Т	Time between T1 and T2
Pmax/tt	Maximal power divided by body weight
W/tt	Energy divided by body weight
A50ms	Start acceleration
Pavg50ms/tt	Start power divided by body weight
Тртах	Time of maximal power compared to G/2
Tfmax	Time between maximal force occurrence and T1
Favg50ms	Start force
T1	Time between T1 and G/2
T2	Time between G/2 and T2
Gftl	Force impulse on interval between T1 and T/2
Gft2	Force impulse on interval between T/2 and T2
T1F	Time between T1 and Fmax
T2F	Time between Fmax and T2
Gft1F	Force impulse on interval between T1 and Fmax
Gft2F	Force impulse on interval between Fmax and T2
Vv	Vertical takeoff velocity
T1/2	T/2 - T1
Axms	Acceleration on selected interval
Aavgl	Average acceleration on interval between T1 and T/2
Aavg2	Average acceleration on interval between T/2 and T2
Pinte	Power on selected interval
Fmax/tt	Maximal force divided by body weight
Favg1/tt	Maximal force divided by body weight on interval between T1 and T/2
Favg2/tt	Maximal force divided by body weight on interval between T/2 and T2
Vstart	Start velocity
FT	Time between T2 and T3

Counter movement jump

The information about the person, jump type parameter and repetition sequence number is positioned at the top of the window. The "Measurement" tab displays the acquired signals as well as the selected cursors, and allows fine cursor positioning. The graph can be zoomed and viewed along auto-scaled or fixed Y axis. Visible plots are collected in the "Plot list". By pressing the "Offset" button prior to the measurement, the input signal is set to zero. With the "Trigger" option unchecked, the signal acquisition starts immediately, while it is delayed until the force exceeds a pre-defined value if the "Trigger" option is selected. The acquisition terminates automatically when jump is completed, and the cursors are set instantly. "Live signals" switches between live acquisition and the last acquired signal.

The results of the analysis are displayed on the "**Results**" tab – in the "**Current**" column, which is updated when the T0 (start of moving) cursor is moved. Other columns contain the results of previously saved measurements. The "**Confirm**" button saves the parameters of the current jump, while the "**CMJ:SJ**" button opens a window where CMJ:SJ proportions can be calculated.

GFI1	Force impulse on interval between TO and T2			
GFI2	Force impulse on interval between T1 and T2			
Gft	Force impulse computed from fly time			
Т	Time between T0 in T2			
T-	Time between T0 in T1			
T+	Time between T1 in T2			
Td	Time of deceleration			
Та	Time of acceleration			
Tg/2	Time between GFI1/2 and T1			
Pmax/tt	Maximal power divided by body weight			
W/tt	Energy divided by body weight			
Pavg50ms/tt	Start power divided by body weight			
Gfi-	Force impulse on interval between TO and T1			
Gfi+	Force impulse on interval between T1 and T2			
Gd+	Force impulse on interval of deceleration			
Ga+	Force impulse on interval of acceleration			
XGa/d	Ratio between Ga and Gd			
Gfil	Force impulse on interval between T1 and T/2			
Gft2	Force impulse on interval between T/2 and T2			
XGt	Ratio between Gfi2 and Gfi1			
Vv	Vertical takeoff velocity			
Hg	Height computed from takeoff velocity			
Hft	Height computed from fly time			
T1/2	T/2 - T1			
Aavgl	Average acceleration on interval between T1 and T/2			
Aavg2	Average acceleration on interval between T/2 and T2			
Fmax/tt	Maximal force divided by body weight			
Tfmax	Time between maximal force occurrence and T1			
Favg1/tt	Maximal force divided by body weight on interval between T1 and T/2			
Favg2/tt	Maximal force divided by body weight on interval between T/2 and T2			
FT	Time between T2 and T3			

Drop jump

The information about the person, jump type parameter, initial height and repetition sequence number is positioned at the top of the window. The "Measurement" tab displays the acquired signals as well as the selected cursors, and allows fine cursor positioning. The graph can be zoomed, and viewed along auto-scaled or fixed Y axis. Visible plots are collected in the "Plot list". By pressing the "Offset" button prior to the measurement, the input signal is set to zero. With the "Trigger" option unchecked, the signal acquisition starts immediately, while it is delayed until the force exceeds a pre-defined value if the "Trigger" option is selected. The acquisition terminates automatically when the jump is completed, and the cursors are set instantly. "Live signals" switches between live signal acquisition and the last acquired signal.

The results of the analysis are displayed on the "**Results**" tab – in the "**Current**" column, which is updated when the T1 (start of contact) cursor is moved. Other columns contain the results of previously saved measurements. The "**Confirm**" button saves the parameters of the current jump.

Gfi	Force impulse on interval between T1 and T2
Gft	Force impulse computed from fly time
T(G/2)	Time between GFI1/2 and T1
XGfi	Ratio between force impulse before T/2 and after T/2
XF	Ratio between force impulse before Fmax and after Fmax
Hg	Height computed from takeoff velocity
Hft	Height computed from fly time
Т	Time between T1 and T2
Pmax/tt	Maximal power divided by body weight
W/tt	Energy divided by body weight
Pavg50ms/tt	Start power divided by body weight
Тртах	Time of maximal power compared to G/2
Tfmax	Time between maximal force occurrence and T1
Favg50ms	Start force
DJ/SJ	Ratio between drop jump height and squat jump height
A50ms	Start acceleration
T1	Time between T1 and G/2
T2	Time between G/2 and T2
Gftl	Force impulse on interval between T1 and T/2
Gft2	Force impulse on interval between T/2 and T2
T1F	Time between T1 and Fmax
T2F	Time between Fmax and T2
Gft1F	Force impulse on interval between T1 and Fmax
Gft2F	Force impulse on interval between Fmax and T2
Vv	Vertical takeoff velocity
T1/2	T/2 - T1
Aavgl	Average acceleration on interval between T1 and T/2
Aavg2	Average acceleration on interval between T/2 and T2
Pinte	Power on selected interval
Fmax/tt	Maximal force divided by body weight
Favg1/tt	Maximal force divided by body weight on interval between T1 and T/2
Favg2/tt	Maximal force divided by body weight on interval between T/2 and T2
Vstart	Start velocity
FT	Time between T2 and T3
Jump status	Jump status

Jump with additional weights

The information about the person, jump type parameter, additional weight and repetition sequence number is positioned at the top of the window. The "Measurement" tab displays the acquired signals as well as the selected cursors, and allows fine cursor positioning. The graph can be zoomed, and viewed along auto-scaled or fixed Y axis. Visible plots are collected in the "Plot list". By pressing the "Offset" button prior to the measurement, the input signal is set to zero. With the "Trigger" option unchecked, the signal acquisition starts immediately, while it is delayed until the force exceeds a pre-defined value if the "Trigger" option is selected. The acquisition terminates automatically when the jumps are completed, and the cursors are set instantly. "Live signals" switches between live signal acquisition and the last acquired signal.

The results of the analysis are displayed on the "**Results**" tab – in the "**Current**" column, which is updated when the cursor is moved. Other columns contain the results of previously saved measurements. The "**Confirm**" button saves the parameters of the current jump.

The other four tabs display the following graphs:

- Normalized force impulse : added weight (1st concentric squat jump)
- Height : added weight (1st concentric squat jump)
- Normalized force impulse : added weight (the batter of the two eccentric-concetric hops)

• Height : added weight (the batter of the two eccentric-concetric hops)

(SJ) Gfi	Force impulse on interval between T1 and T2
(SJ) Gft	Force impulse computed from fly time
(SJ) T(G/2)	Time between GFI1/2 and T1
(SJ) XGfi	Ratio between force impulse before T/2 and after T/2
(SJ) XF	Ratio between force impulse before Fmax and after Fmax
(SJ) Hg	Height computed from takeoff velocity
(SJ) Hft	Height computed from fly time
(SJ) T	Time between T1 and T2
(SJ) Pmax/tt	Maximal power divided by body weight
(SJ) W/tt	Energy divided by body weight
(SJ) A50ms	Start acceleration
(SJ) Pavg50ms/tt	Start power divided by body weight
(SJ) Tpmax	Time of maximal power compared to G/2
(SJ) Tfmax	Time between maximal force occurrence and T1
(SJ) Favg50ms	Start force
(SJ) T1	Time between T1 and G/2
(SJ) T2	Time between G/2 and T2
(SJ) Gftl	Force impulse on interval between T1 and T/2
(SJ) Gft2	Force impulse on interval between T/2 and T2
(SJ) T1F	Time between T1 and Fmax
(SJ) T2F	Time between Fmax and T2
(SJ) Gft1F	Force impulse on interval between T1 and Fmax
(SJ) Gft2F	Force impulse on interval between Fmax and T2
(SJ) Vv	Vertical takeoff velocity
(SJ) Axms	Acceleration on selected interval
(SJ) Aavgl	Average acceleration on interval between T1 and T/2
(SJ) Aavg2	Average acceleration on interval between T/2 and T2
(SJ) Pinte	Power on selected interval
(SJ) Fmax/tt	Maximal force divided by body weight
(SJ) Favgl/tt	Maximal force divided by body weight on interval between T1 and T/2
(SJ) Favg2/tt	Maximal force divided by body weight on interval between T/2 and T2
(SJ) Vstart	Start velocity
(SJ) FT	Time between T2 and T3

* (SJ) - Squat jump

(DJ) Gfi	Force impulse on interval between T1 and T2
(DJ) Gft	Force impulse computed from fly time
(DJ) T(G/2)	Time between GFI1/2 and T1
(DJ) XGfi	Ratio between force impulse before T/2 and after T/2
(DJ) XF	Ratio between force impulse before Fmax and after Fmax
(DJ) Hg	Height computed from takeoff velocity
(DJ) Hft	Height computed from fly time
(DJ) T	Time between T1 and T2
(DJ) Pmax/tt	Maximal power divided by body weight
(DJ) W/tt	Energy divided by body weight
(DJ) A50ms	Start acceleration
(DJ) Pavg50ms/tt	Start power divided by body weight
(DJ) Tpmax	Time of maximal power compared to G/2
(DJ) Tfmax	Time between maximal force occurrence and T1
(DJ) Favg50ms	Start force
(DJ) T1	Time between T1 and G/2
(DJ) T2	Time between G/2 and T2
(DJ) Gftl	Force impulse on interval between T1 and T/2
(DJ) Gft2	Force impulse on interval between T/2 and T2
(DJ) T1F	Time between T1 and Fmax
(DJ) T2F	Time between Fmax and T2
(DJ) Gft1F	Force impulse on interval between T1 and Fmax
(DJ) Gft2F	Force impulse on interval between Fmax and T2
(DJ) Vv	Vertical takeoff velocity
(DJ) Axms	Acceleration on selected interval
(DJ) Aavgl	Average acceleration on interval between T1 and T/2
(DJ) Aavg2	Average acceleration on interval between T/2 and T2
(DJ) Pinte	Power on selected interval
(DJ) Fmax/tt	Maximal force divided by body weight
(DJ) Favgl/tt	Maximal force divided by body weight on interval between T1 and T/2 $$
(DJ) Favg2/tt	Maximal force divided by body weight on interval between T/2 and T2

* (DJ) - Drop jump

(DJ) Vstart

(DJ) FT

Start velocity

Time between T2 and T3

Repetitive counter movement jump

The information about the person, jump type parameter and repetition sequence number is positioned at the top of the window. The "Measurement" tab displays the acquired signals. The graph can be zoomed, and viewed along auto-scaled or fixed Y axis. Visible plots are collected in the "Plot list". By pressing the "Offset" button prior to the measurement, the input signal is set to zero. With the "Trigger" option unchecked, the signal acquisition starts immediately, while it is delayed until the force exceeds a pre-defined value if the "Trigger" option is selected. The acquisition can be terminated automatically by selecting any combination of the following three parameters: "Stop time", "Number of jumps", and "Tiredness index". It can also be terminated manually by pressing the "Stop" button. "Live signals" switches between live signal acquisition and the last acquired signal.

The results of the analysis are displayed on the "**Results**" tab – in the "**Current**" column, which is updated when the "**Number of jumps for analysis**" parameter value is changed. Other columns contain the results of previously saved measurements. The "**Confirm**" button saves the parameters of the current jump.

Hmax	Maximal jump height
Hmaxn	Consecutive number of maximal jump height
Hmin	Minimal jump height
Hminn	Consecutive number of minimal jump height
Havgl	Average height of first n jumps
Havg2	Average height of n jumps in the middle of series
Havg3	Average height of last n jumps
FATh	Fatigue index of height
ENDUh	Endurance index of height
Tcomax	Maximal jump contact time
Tcomaxn	Consecutive number of maximal jump contact time
Tcomin	Minimal jump contact time
Tcominn	Consecutive number of minimal jump contact time
Tcoavgl	Average contact time of first n jumps
Tcoavg2	Average contact time of n jumps in the middle of series
Tcoavg3	Average contact time of last n jumps
FATco	Fatigue index of contact time
ENDUco	Endurance index of contact time
H/Tmax	Maximal jump ratio between height and contact time
H/Tmaxn	Consecutive number of maximal jump ratio between height and contact time
H/Tmin	Minimal jump ratio between height and contact time
H/Tminn	Consecutive number of minimal jump ratio between height and contact time
H/Tavgl	Average ratio between height and contact time of first n jumps
H/Tavg2	Average ratio between height and contact time of n jumps in the middle of series
H/Tavg3	Average ratio between height and contact time of last n jumps
FAT H/T	Fatigue index of ratio between height and contact time
ENDU H/T	Endurance index of ratio between height and contact time

Repetitive hooping

The information about the person, jump type parameter and repetition sequence number is positioned at the top of the window. The "Measurement" tab displays the acquired signals. The graph can be zoomed, and viewed along auto-scaled or fixed Y axis. Visible plots are collected in the "Plot list". By pressing the "Offset" button prior to the measurement, the input signal is set to zero. With the "Trigger" option unchecked, the signal acquisition starts immediately, while it is delayed until the force exceeds a pre-defined value if the "Trigger" option is selected. The acquisition can be terminated automatically by selecting any combination of the following three parameters: "Stop time", "Number of jumps", and Tiredness index. It can also be terminated manually by pressing the "Stop" button. "Live signals" switches between live signal acquisition and the last acquired signal.

The results of the analysis are displayed on the "**Results**" tab – in the "**Current**" column, which is updated when the "**Number of jumps for analysis**" parameter value is changed. Other columns contain the results of previously saved measurements. The "**Confirm**" button saves the parameters of the current jump.

Hmax	Maximal jump height
Hmaxn	Consecutive number of maximal jump height
Hmin	Minimal jump height
Hminn	Consecutive number of minimal jump height
Havgl	Average height of first n jumps
Havg2	Average height of n jumps in the middle of series
Havg3	Average height of last n jumps
FATh	Fatigue index of height
ENDUh	Endurance index of height
Tcomax	Maximal jump contact time
Tcomaxn	Consecutive number of maximal jump contact time
Tcomin	Minimal jump contact time
Tcominn	Consecutive number of minimal jump contact time
Tcoavgl	Average contact time of first n jumps
Tcoavg2	Average contact time of n jumps in the middle of series
Tcoavg3	Average contact time of last n jumps
FATco	Fatigue index of contact time
ENDUco	Endurance index of contact time
H/Tmax	Maximal jump ratio between height and contact time
H/Tmaxn	Consecutive number of maximal jump ratio between height and contact time
H/Tmin	Minimal jump ratio between height and contact time
H/Tminn	Consecutive number of minimal jump ratio between height and contact time
H/Tavgl	Average ratio between height and contact time of first n jumps
H/Tavg2	Average ratio between height and contact time of n jumps in the middle of series
H/Tavg3	Average ratio between height and contact time of last n jumps
FAT H/T	Fatigue index of ratio between height and contact time
ENDU H/T	Endurance index of ratio between height and contact time

Step analysis

The information about the person, jump parameters and repetition sequence number is positioned at the top of the window. The "Measurement" tab displays the acquired signals as well as the selected cursors, and allows fine cursor positioning. The graph can be zoomed, and viewed along auto-scaled or fixed Y axis. Visible plots are collected in the "Plot list". By pressing the "Offset" button prior to the measurement, the input signal is set to zero. With the "Trigger" option unchecked, the signal acquisition starts immediately, while it is delayed until the force exceeds a pre-defined value if the "Trigger" option is selected. The acquisition terminates automatically or by pressing the "Stop" button. "Live signals" switches between live signal acquisition and the last acquired signal. "Change orientation" switches the Fx and Fy axes. The "COG" tab displays the Center of gravity graph.

The results of the analysis are displayed on the "**Results**" tab – in the "**Current**" column, which is updated when the "**Analysis**" button is pushed. Other columns contain the results of previously saved measurements. The "**Confirm**" button saves the parameters of the current jump. The 3D vector graph, COG velocity graph and COG acceleration graph are available on the other tabs.

Fmaxx	Maximal force in x direction
Fmaxy	Maximal force in y direction
Fmaxz	Maximal force in z direction

Body sway

The information about the person, jump parameters and repetition sequence number is positioned at the top of the window. The "Measurement" tab displays the acquired signals as well as the selected cursors, and allows fine cursor positioning. The graph can be zoomed, and viewed along auto-scaled or fixed Y axis. Visible plots are collected in the "Plot list". By pressing the "Offset" button prior to the measurement, the input signal is set to zero. Signal acquisition starts when pressing the "Start" button and terminates automatically or by pressing the "Stop" button. "Live signals" switches between live signal acquisition and the last acquired signal. "Change orientation" switches the Fx and Fy axes. The "COG" tab displays the Center of gravity graph.

The results of the analysis are displayed on the "**Results**" tab – in the "**Current**" column. Other columns contain the results of previously saved measurements. The "**Confirm**" button saves the parameters of the current jump. The 3D vector graph, COG velocity graph and COG acceleration graph are available on the other tabs.

- 🗆 🗵 Figure 21 Body sway measurem select repetition Plots visible plots Weight **Wise Technologies** 2 C John Doe 88 Fx [N 1 select parameters copened eyes
arms beside hips Fz [N] er 1 Para . right leg EXIT COG Measurement Results Live signals 🔽 Change orientation indicates made jumps live signals change between made and live acquisition BS -0.039 -0.04 -0,041 --0,042 -0,043 -0,014 -0,045 -0,046 center of gravity graph P47 -0.049 -0,05 -0,051 --0,052 --0,053 --0,054 --0,055 -0,056 057graph tools (cursor move, zoom and hand) 0,03 0,035 0,04 0,045 0,05 0,055 0,06 0,065 X[m] + 20 Duration (s) measurement duration Offset Start (c) 2006, Wise Technologies d.o.o *Figure 22* Results of analysis Weight 88 Plots Na Code **Wise Technologies** John Doe 1 5 6 FX [N Fy [N Innovativ Parameter 2 Parameter 3 Parameter 1 0 0 0 0 EXIT right leg ٣ COG Measurement Results Live signals I Change orientation change orientation of COG graph Confirm Save all data
 Current

 COG
 0,987333 m

 COG m-1
 0,000365 m

 Anax.m-1
 0,0023617 m

 Anax.m-2
 0,023617 m

 Anax.m-3
 0,023617 m

 Anax.m-4
 0,023617 m

 Anax.m-4
 0,023617 m

 F
 16,1006314 m

 F
 16,135504 Hz

 F m-1
 Na9H Hz

 F m-2
 Na9H Hz

 F ap
 9,966999 Hz

 F ap
 Na9H Hz

 F ap
 Na9H Hz

 F Ar ap
 Na9M M
 pavameters for each repetition T Duration (s) Offset Start Stop (c) 2006, Wise Technologies d.o.o.

COG	COG distance
COG m-I	COG distance in medio-lateral direction
COG a-p	COG distance in anterior-posterior direction
Amax m-I	Maximal amplitude in medio-lateral direction
Amax a-p	Maximal amplitude in anterior-posterior direction
f	Frequency in medio-lateral and anterior-posterior direction
N m-I	Number in oscillations in medio-lateral direction
N а-р	Number in oscillations in anterior-posterior direction
f m-l	Frequency in medio-lateral direction
f m-l 1	Frequency in medio-lateral direction in first 10 seconds
f m-l 2	Frequency in medio-lateral direction in 10 seconds in the middle of test
f m-l 3	Frequency in medio-lateral direction in last 10 seconds
f a-p	Frequency in anterior-posterior direction
fa-pl	Frequency in anterior-posterior direction in first 10 seconds
f a-p 2	Frequency in anterior-posterior direction in 10 seconds in the middle of test
f a-p 3	Frequency in anterior-posterior direction in last 10 seconds
f FAT m-l	Fatigue index of frequency in medio-lateral direction
f ENDU m-I	Endurance index of frequency in medio-lateral direction
f FAT a-p	Fatigue index of frequency in anterior-posterior direction
f ENDU a-p	Endurance index of frequency in anterior-posterior direction
COG m-l 1	COG distance in medio-lateral direction in first 10 seconds
COG m-l 2	COG distance in medio-lateral direction in 10 seconds in the middle of test
COG m-I 3	COG distance in medio-lateral direction in last 10 seconds
COG a-p l	COG distance in anterior-posterior direction in first 10 seconds
COG a-p 2	COG distance in anterior-posterior direction in 10 seconds in the middle of test
COG a-p 3	COG distance in anterior-posterior direction in last 10 seconds
COG FAT m-l	Fatigue index of COG distance in medio-lateral direction
COG ENDU m-I	Endurance index of COG distance in medio-lateral direction
COG FAT a-p	Fatigue index of COG distance in anterior-posterior direction
COG ENDU a-p	Endurance index of COG distance in anterior-posterior direction
Am-Il	Amplitude in medio-lateral direction in first 10 seconds
A m-I 2	Amplitude in medio-lateral direction in 10 seconds in the middle of test
A m-I 3	Amplitude in medio-lateral direction in last 10 seconds
Aa-pl	Amplitude in anterior-posterior direction in first 10 seconds
А а-р 2	Amplitude in anterior-posterior direction in 10 seconds in the middle of test
А а-р 3	Amplitude in anterior-posterior direction in last 10 seconds
A FAT m-I	Fatigue index of COG distance in medio-lateral direction
A ENDU m-I	Endurance index of COG distance in medio-lateral direction
A FAT a-p	Fatigue index of COG distance in anterior-posterior direction
A ENDU a-p	Endurance index of COG distance in anterior-posterior direction

Dynamic balance test

The information about the person and repetition sequence number is positioned at the top of the window. Graphs allow zooming, and can be viewed along auto-scaled or fixed Y axis. Visible plots are collected in "**Plot list**". By pressing the "**Offset**" button prior to the measurement, the input signal is set to zero. Signal acquisition starts by pressing the "**Start**" button. It is terminated automatically via the pre-selected stop options, or manually by pressing the "**Stop**" button. "**Live signals**" switches between live signal acquisition and the last acquired signal. "**Change orientation**" switches the Fx and Fy axes. The "**COG**" tab contains the Center of gravity graph, initial settings and types of measurement.

The results of the analysis are displayed on the "**Results**" tab in the "**Current**" column. Other columns contain the results of previously saved measurements. The "**Confirm**" button saves of the parameters of the current jump.

Figure 25	NeasurementDynar	nicBalanceTest.vi									_1	
Results of analysis	Name	Weight	Code						Plots			
nesales of analysis	John Doe	88							E2 [N]	🛒 Wise Techno	logies	
				ċ	à i	è è	č	ĉ	a second s	Innovative software	solutions	
	Full screen during me	asurement 🔽 Cha	nge orientation		0		-					
	Loop L Harmon	Results Live	signals		<u> </u>		•	•		T EXIT		
	COG Measurement	Results										
		-										
	Confirm	1										
			Owent	_								
	T	50.000000 <	50.000000 <	_								
	N	8,000000	3,000000									
	L	9,478849 m*s	8,624272 m*s									
	FATI	8,936917	NaN									
	ENDU	NaN	0,815141									
	Amax	0,440961 m	0,464945 m	_								
	FATa	4,934550	2,907827	_								
	ENDUa	4,628904	0,921746	_								
												12
	Off	set Start	Stop							(c) 2006, Wise Technolo	gies d.o.o.	
	4										1	تے.
											1	-

Т	Time
Ν	Number of repetitions
L	Area between COG trajectory and generated trajectory
FATI	Fatigue of area index
ENDUI	Endurance of area index
Amax	Maximal amplitude
FATa	Fatigue index of amplitude
ENDUa	Endurance index of amplitude
Long jump

The information about the person, jump type parameter and repetition sequence number is positioned at the top of the window. The "Measurement" tab displays the acquired signals as well as the selected cursors, and allows fine cursor positioning. The graph can be zoomed and viewed along auto-scaled or fixed Y axis. Visible plots are collected in the "Plot list". By pressing the "Offset" button prior to the measurement, the input signal is set to zero. With the "Trigger" option unchecked, the signal acquisition starts immediately, while it is delayed until the force exceeds a pre-defined value if the "Trigger" option is selected. The acquisition terminated automatically when the jump is completed, and the cursors are set instantly. "Live signals" switches between live acquisition and the last acquired signal.

The results of the analysis are displayed on the "**Results**" tab – in the "**Current**" column, which is updated when the cursor is moved. Other columns contain the results of previously saved measurements. The "**Confirm**" button saves the parameters of the current jump.

	Weight	Code			Plots	Wise Technologie
n Doe	88		1 2 3	4 5 6	Fx [N]	vvise rechnologie
			0 0 0	000	Fy [N] Ex (M)	Innovative software solutions
	Type	had been	0.00	0 0 0	12(0)	
surement F	Results	two legs \bigtriangledown				T EXIT
Confirm						
Commin						
save	allaata	2	3	4	Current	
GETI	163.135486 Nr	163.712546 Nz	161.802357 Ne	166.441657 Ne	174 679045 Nr	
GE12	193.010493 Ne	246.881151 Nc	268 996068 Nc	296 527391 Ne	286 835560 Nc	
T	0.766000 c	0.958000 c	0.832000 ¢	1.007000 c	0.759000 c	
T-	0,339000 4	0.449000 c	0.385000 c	0.562000 c	0.319000 c	
T.+	0,007000 s	0.510000 c	0.447000 c	0.445000 c	0.440000 c	parameters for each repetition
Td	0.130000 s	0.216000 \$	0.188000 <	0.178000 s	0.171000 \$	
Ta	1.635000 \$	1.731000 s	1.643000 s	1.828000 s	1.587000 s	
Tal2	0 594000 c	0.767000 c	0.652000 c	0.842000 c	0.579000 c	
Proav/Ht	47 565069 Wilka	57 423607 W/km	62 199595 W/ka	74 628890 W/kg	69 208282 Wilka	
water	6 999304 1/kg	11.059637.16/2	11.096961.1/kg	13 904229 1/kg	13 192911 184	
Dave50metht	0,999304 5hy	0.307603 W/kg	0 540740 Wika	0.904161 Wika	0 784338 W/ka	
CB.	-20 025257 Nr	-93 219729 Nr	-107 242497 Nr	-120 121409 Nr	-112 209264 Nr	
GR+	193 010493 Nr	246 991151 Nz	269 006069 Nz	206 527301 Mc	296 935560 Nr	
Gd+	20 025357 Nz	93 218728 Nz	107 243497 Nz	130 131408 Nz	112 200364 Nr	
Gat	163 085136 Ne	163 662423 No	161 752581 Nc	166 395982 Nc	174 626196 Nc	
XGa/d	544.973068	196.665373	150.827417	127.867656	155 625333	
GÉI	77.140183 Ne	114 044316 Ne	143 276646 Ne	164 427039 Ne	160,502426 Nk	
GR2	115 870311 Ne	132,836836 Nc	125 719422 Nc	132 100352 Ne	126 328134 Nc	
VQ.	150 207462	116 478261	87.745927	80.339798	78 705476	
1br	1.853812 m/c	1.860370 m/c	1.838663 m/c	1.891382 m/c	1 984989 m/c	
Ha	0.175159 m	0.176400 m	0.172308 m	0.182331 m	0.200825.m	
T1/2	0.213500 c	0.255000 4	0.223500 c	0.222500 c	0.220000.4	
Aava1	4 116870 m/c*c	5 101159 m/c*c	7 328843 m/c*c	8 436622 m/c*c	8 317459 m/c*c	
Aava2	6 149520 m/e*c	5 882829 m/s*e	6 305559 m/e*e	6 601241 m/e*e	6 477908 m/c*c	
Froavitt	22 374991 N/kg	20 729936 Nika	21.629899 N&a	23 291077 N&o	21 728655 N/kg	
Theav	0.312000 ¢	0.393000 c	0.213000 c	0.324000 c	0.327000 c	
Eavo1/H	13 926970 N/kg	14 911159 Nika	17 138843 Nika	18 246622 Nilka	18 127459 N/km	
Favo2/tt	15,959529 Niko	15.692829 Nika	16.115559 Nika	16.501241 Niko	16,287908 N/kg	
Fmayy	0.000000 N	0.000000 N	0.000000 N	0.000000 N	762.066038 N	
Gu	MaNI No	NaNING	NaN No	NaN No	184 581300 Nk	
Pmayvitt	0.000000 W/ka	0.000000 W/ka	0.000000 Wika	0.000000 Wika	15.484315 Wike	
W/	NaN m/s	NaN mis	NaN m/s	NaN m/s	2.097515 m/s	
Fmax	1968 990374 N	1824 234342 N	1903 431140 N	2049 614795 N	2058 386192 N	
6	NaN Ne	NaN Ne	NaN Ne	NaN Ne	254 131905 Ne	
Desayabb	47 565060 Wilka	57 423607 Wilke	62 199595 Willia	74 629900 W/ka	70 010322 Wiles	

Gfil	Force impulse on interval between T0 and T2
GFI2	Force impulse on interval between T1 and T2
Т	Time between T0 in T2
T-	Time between T0 in T1
T+	Time between T1 in T2
Td	Time of deceleration
Та	Time of acceleration
Tg/2	Time between GFI1/2 and T1
Pmax/tt	Maximal power divided by body weight
W/tt	Energy divided by body weight
Pavg50ms/tt	Start power divided by body weight
Gfi-	Force impulse on interval between T0 and T1
Gfi+	Force impulse on interval between T1 and T2
Gd+	Force impulse on interval of deceleration
Ga+	Force impulse on interval of acceleration
XGa/d	Ratio between Ga and Gd
Gfil	Force impulse on interval between T1 and T/2
Gfi2	Force impulse on interval between T/2 and T2
XGt	Ratio between Gfi2 and Gfi1
Vv	Vertical takeoff velocity
Hg	Height computed from takeoff velocity
T1/2	T/2 - T1
Aavgl	Average acceleration on interval between T1 and T/2
Aavg2	Average acceleration on interval between T/2 and T2
Fmax/tt	Maximal force divided by body weight
Tfmax	Time between maximal force occurrence and T1
Favg1/tt	Maximal force divided by body weight on interval between T1 and T/2
Favg2/tt	Maximal force divided by body weight on interval between T/2 and T2
Fmaxy	Maximal force in horizontal direction
Gy	Force impulse in horizontal direction
Pmaxy/tt	Maximal power divided by body weight in horizontal direction
Vy	Horizontal takeoff velocity
Fmax	Maximal force
G	Force impulse
Pmax/tt	Maximal power divided by body weight
V	Takeoff velocity
D	Jump distance
H/D	Ratio between height and distance

Stamping

The information about the person and repetition sequence number is positioned at the top of the window. The "Measurement" tab displays the acquired signals as well as the selected cursors, and allows fine cursor positioning. The graph can be zoomed and viewed along auto-scaled or fixed Y axis. Visible plots are collected in the "Plot list". By pressing the "Offset" button prior to the measurement, the input signal is set to zero. With the "Trigger" option unchecked, the signal acquisition starts immediately, while it is delayed until the force exceeds a pre-defined value if the "Trigger" option is selected. The acquisition is terminated automatically or by pressing the "Stop" button. "Live signals" switches between live acquisition and the last acquired signal.

The results of the analysis are displayed on the "**Results**" tab in the "**Current**" column. Other columns contain the results of previously saved measurements. The "**Confirm**" button saves the parameters of the current jump.

Т	Time
f	Average frequency
fl	Area between COG trajectory and generated trajectory
f2	Average frequency in n seconds in the middle of series
f3	Average frequency in last n seconds
FAT	Fatigue index of frequency
ENDU	Endurance index of frequency
Ν	Number of stamps
TF+	Time above selected force value
TF-	Time under selected force value

Maximal voluntary contraction

The information about the person, type and repetition sequence number is positioned at the top of the window. The main part of the window displays the acquired signals as well as the selected cursors, and allows fine cursor positioning. The graph can be zoomed, and viewed along auto scaled or fixed Y axis. Visible plots are collected in the "**Plot list**". By pressing the "**Offset**" button prior to the measurement, the input signal is set to zero. The acquisition starts by pressing the "**Start**" button and stops with the "**Stop**" button. "**Live signal**" switches between live acquisition and the last acquired signal. The maximal voluntary contraction is calculated from the signal within the two cursors. The distance between the cursors can be determined in the cursor window.

EMG signals analysis - optional with Maximal voluntary contraction

Contraction endurance

The information about the person, type and repetition sequence number is positioned at the top of the window. The main part of the window displays the acquired signals as well as the selected cursors, and allows fine cursor positioning. The graph can be zoomed, and viewed along auto-scaled or fixed Y axis. Visible plots are collected in the "**Plot list**". By pressing the "**Offset**" button prior to the measurement, the input signal is set to zero. The acquisition starts by pressing the "**Start**" button and stops with the "**Stop**" button. "**Live signals**" switches between live acquisition and the last acquired signal. The contraction endurance is calculated from the signal within the two cursors. If the signal drops below the pre-selected limit, the "**Under**" led indicator turns red.

EMG signals analysis - optional with Contraction endurance

Explosive contraction

The information about the person, type and repetition sequence number is positioned at the top of the window. The main part of the window displays the acquired signals as well as the selected cursors, and allows fine cursor positioning. The graph can be zoomed, and viewed along auto-scaled or fixed Y axis. Visible plots are collected in the "**Plot list**". By pressing the "**Offset**" button prior to the measurement, the input signal is set to zero. The acquisition starts by pressing the "**Start**" button and stops with the "**Stop**" button. "**Live signals**" switches between live acquisition and the last acquired signal. The explosive contraction parameters are calculated from the signal within the two cursors. The distance between the cursors can be determined in the cursor window.

EMG signals analysis - optional with Explosive contraction

k	Slope on selected interval
%MVC	Ratio between force at end cursor and maximal voluntary contraction
max	Maximal force
average	Average force on selected interval
F cursor	Force at end cursor

Twitch

The information about the person, type and repetition sequence number is displayed at the top of the window. The "Graph" tab displays the acquired signals as well as the selected cursors, and allows fine cursor positioning. The graph can be zoomed, and viewed along auto-scaled or fixed Y axis. Visible plots are collected in the "Plot list". By pressing the "Offset" button prior to the measurement, the input signal is set to zero. The acquisition starts by pressing the "Start" button and stops with the "Stop" button. "Live signals" switches between live acquisition and the last acquired signal. The results of the analysis are displayed on the "Results" tab.

Electromechanical delay	Time between electro stimulation and force increasing
Time-to-peak	Time between force increasing and maximal force
Half-relaxation time	Time to half of maximal force
Maximum force	Maximal force
Maximum slop	Maximal slope
T-Fsubmax	Time when force is above selected value

Activation level

The information about the person, type and repetition sequence number is displayed at the top of the window. The "Graph" tab displays the acquired signals as well as the selected cursors, and allows fine cursor positioning. The graph can be zoomed, and viewed along auto-scaled or fixed Y axis. Visible plots are collected in the "Plot list". By pressing the "Offset" button prior to the measurement, the input signal is set to zero. The acquisition starts by pressing the "Start" button and stops with the "Stop" button. "Live signals" switches between live acquisition and the last acquired signal. The results of the analysis are displayed on the "Results" tab. The distances between the cursors can be changed in the MVC and ES windows.

WISE COACH

TW	Twitch amplitude
Fmvc	Maximal voluntary contraction
Fmvc+ES	Maximal voluntary contraction with electro stimulation
AL	Activation level

Tracking

The information about the person, type, plot for analysis and repetition sequence number is displayed at the top of the window. The "Measurement" tab displays the acquired signals as well as the selected cursors, and allows fine cursor positioning. The graph can be zoomed, and viewed along auto-scaled or fixed Y axis. Visible plots are collected in the "Plot list". By pressing the "Offset" button prior to the measurement, the input signal is set to zero. The acquisition starts by pressing the "Start" button. It is terminated with the "Stop" button or via the preselected stop options. "Live signals" switches between live acquisition and the last acquired signal. The "Generate signal" option offers the functionality for track signal generation. Time intervals and amplitude ranges are managed by "Add interval", "Edit intervals" and "Amplitude ranges". The strip and scope types of the graph update are available. The "Leveled signal" tab displays the distance between the real and the tracking signal. The results of the analysis are displayed on the "Results" tab.

Tracking force

(c) 2006, Wise Technologies d.o.d

Tracking angle

average amplitude	Average amplitude between generated and actual curve
area	Area between generated and actual curve
normalized amplitude	Normalized amplitude between generated and actual curve

Evoked potentials

The information about the person, type, plot for analysis and repetition sequence number is positioned at the top of the window. The "Measurement" tab displays the acquired signals as well as the selected cursors, and allows fine cursor positioning. The graph can be zoomed and viewed along auto-scaled or fixed Y axis. Visible plots are collected in the "Plot list". By pressing the "Offset" button prior to the measurement, the input signal is set to zero. With the "Trigger" option unchecked, the signal acquisition starts immediately, while it is delayed until the force exceeds a pre-defined value if the "Trigger" option is selected. The acquisition terminates by pressing the "Stop" button. "Live signals" switches between live acquisition and the last acquired signal.

The results of the analysis of traces and store are displayed on the "**Results**" tab. The "**Confirm**" button saves the results of the current jump. Each trace and store can be manually processed on the "**Trace and Store**" tab.

Тху	Time between cursors x and y
Sxy	Area on interval x and y
Аху	Amplitude between cursors x and y

Static voluntary

Certain measurement modules also include a module for static voluntary analysis of the EMG signals. The module supports signal analysis with results displayed on the **"One window"** and **"More windows"** tabs. Signals can be processed with the band-pass or smoothing filter.

🔁 EMG Static Voluntary

Figure 66 More windows analysis - Mean amplitude graph

RMS	Root mean square on selected interval	
МАтр	Mean amplitude on selected interval	
Med	Median on selected interval	
AvgFreq	Average frequency on selected interval	

4R0W

It is a complex system of mechanical sensors built in a "**Concept2**" rowing-ergometer. It can, however, be adapted for the use on other types and models of machines in order to carry out a complete analysis of rowing dynamics.

The system consists of:

- Three electronic strain gauge based force sensors (handle pull force sensor and two separate sensors for leg push force);
- Two electronic potentiometer based position sensors (seat position and handle position sensors);
- Input box for signals with A/D conversion and amplification functions;
- PC with software for acquisition and analysis of the signals

In addition to all the above listed sensor signals also internally registered ergometer data can be transferred, acquired and analysed by the 4ROW software.

4ROW software is comprised of four modules. First module is the main window, through which the operator controls a live measurement. It contains of the "Start Measuring" button for starting the measurement. During the measurement, live data can be observed on a graph under the "Live Signals" tab. The table beneath the graph displays the calculated parameters for the last completed stroke. Same data can be observed under the tab "Last Stroke Data". The tab "PM Data" displays the data collected from the PM3 module on the rowing machine, associated to the last completed stroke. To conclude the measurement, "Stop Measuring" button has to be pressed.

The acquired data can be saved by pressing the "Save Data" button. For loading data, the "Load Data" button needs to be pressed. Besides the fore mentioned controls, three other buttons, "Edit Info", "Analyse Data" and "Settings", are available, allowing the user to access the other three software modules. Button "Edit Info" starts the module where measurement description can be edited, such as the rower personal data and description of conditions under which the measurement was taken. Pressing the "Analyse Data" button, a module is started where post-measurement analysis can be performed, such as observing the measurement parameters and signals inside the user specified measurement intervals. The measurement data can as well be exported as a text file. For sensor calibration, settings module can be started from the main window, by pressing the "Settings" button.

Measured Data

Signals	Description		
Force Oar	Oar pull force		
ForceLegL	Left leg push force		
ForceLegR	Right leg push force		
0ar Enc	Oar position		
Seat Enc	Seat position		
Calculated Parameters	Description		
Тетро	Strokes per minute		
Rhythm	Ratio between time of pull and release phase of stroke		
OarPullTime	Time of pull phase of the stroke		
0arPullPath	Distance covered by oar during pull phase of stroke		
SeatPullPath	Distance covered by seat during pull phase of stroke		
OarSeatPathR_p	Ratio between distance covered by oar and seat during pull phase of stroke		
Avg0arF_p	Averaged oar force during pull phase of stroke		
AvgLLegF_p	Averaged left leg force during pull phase of stroke		
AvgRLegF_p	Averaged right leg force during pull phase of stroke		
AvgLRLegF_p	Averaged left and right leg force during pull phase of stroke		
PM Data	Description		
WorkoutDuration	Work time duration of workout		
Horizontal Distance	Work distance of workout		
Pace	Time elapsed per unit distance for a given stroke		
Power	Power generated based on the pace per stroke		
Calories	Accumulated calories burned		
Cadence	Strokes per minute per stroke		
CurrHeartRate	Current heart beats per minute		

Auto-Q

It is a multi-purpose questionnaire software which offers wide variety of options. It was primarily build for sports and rehabilitation anamnestic data purposes, although its application can be much broader.

Main characteristics of the product are:

- Possibility of administator triggered and number code blinded use;
- User defined questions, question sets and score calculations;
- Four possible question types (multiple choice, text, scale, yes/no);
- Saving and recalling of the acquired data;
- Export of data, basic statistical analyses.

Točke

0

Figure 70 Pre-defining the questionnaire	Ali je imel kdo v vaš Tip 1 Število odgovorov 2 DA NE	ii družini rakasto bole Tip 2 Izł	Vprašanje szen? Tip 3 birni odgovori	Tip 4	Točke 1 Točke 0
		Potrdi	PS Razveljavi		
Figure 71 Pre-defining the questionnaire	Dredi Vprašanje Ali je imel kdo v vaš Tip 1 Število odgovorov 2 DA	i družini rakasto bola Tip 2 Izbirni a	Vprašanje ezen? Tip 3 odgovori s točkami	Tip 4	Točke 1

PS

Razveljavi

Potrdi

74 MEASUREMENT MODULES/AUTO-Q

NE

Pre-defining the	🕺 Uredi Vpraša	nje			\mathbf{X}
questionnaire			Vprašanje		
	Izberite st	opnjo bolečine v kolenu?			
	Tip 1	Tip 2	Tip 3	Tip 4	
			Lestvica		
	Min Opis				
	0 neboleče				
	Max Opis 5 zelo boleč	 íe			
			PS		
		Potr	di Razveljavi		
<i>Figure 72</i> Pre-defining the	<mark>ळ</mark> Uredi Vpraša	nje			×
questionnaire	Onišite tin	holečine?	Vprašanje		
	Tip 1	Tip 2	Тір З	Tip 4	
		Pr	osti vnos teksta		
		Pr	osti vnos teksta		
		Pr	osti vnos teksta		
		Pr	osti vnos teksta		
		Pr	osti vnos teksta		
		Pr	osti vnos teksta		
		Pr	osti vnos teksta		
		Pr	osti vnos teksta		
		Pr	osti vnos teksta		
		Pr	osti vnos teksta PS		
		Pr	osti vnos teksta PS		
		Pr	osti vnos teksta PS di Razveljavi		

Figure 75 Answering GUI - Filling-in the questionnaire		Vprašanje Opišite tip bolečine?	
		Izbran odgovor bolečine pri delanju počepov	
	\triangleleft		
		C	

